• PT. Nusakura Standarindo
  • +62 21-27872355

Pressure Vessel

Inspection & Certification – Pressure Vessel

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

Pressure vessels can be dangerous, and fatal accidents have occurred in the history of their development and operation. Consequently, pressure vessel design, manufacture, and operation are regulated by engineering authorities backed by legislation. For these reasons, the definition of a pressure vessel varies from country to country.

Design involves parameters such as maximum safe operating pressure and temperature, safety factor, corrosion allowance and minimum design temperature (for brittle fracture). Construction is tested using nondestructive testing, such as ultrasonic testing, radiography, and pressure tests. Hydrostatic tests use water, but pneumatic tests use air or another gas. Hydrostatic testing is preferred, because it is a safer method, as much less energy is released if a fracture occurs during the test (water does not rapidly increase its volume when rapid depressurization occurs, unlike gases like air, which fail explosively).

In most countries, vessels over a certain size and pressure must be built to a formal code. In the United States that code is the ASME Boiler and Pressure Vessel Code (BPVC). In Europe the code is the Pressure Equipment Directive. Information on this page is mostly valid in ASME only. These vessels also require an authorized inspector to sign off on every new vessel constructed and each vessel has a nameplate with pertinent information about the vessel, such as maximum allowable working pressure, maximum temperature, minimum design metal temperature, what company manufactured it, the date, its registration number (through the National Board), and ASME's official stamp for pressure vessels (U-stamp). The nameplate makes the vessel traceable and officially an ASME Code vessel.

A special application is pressure vessels for human occupancy, for which more stringent safety rules apply.

Working pressure

The typical circular-cylindrical high pressure gas cylinders for permanent gases (that do not liquify at storing pressure, like air, oxygen, nitrogen, hydrogen, argon, helium) have been manufactured by hot forging by pressing and rolling to get a seamless steel vessel.

Working pressure of cylinders for use in industry, skilled craft, diving and medicine had a standardized working pressure (WP) of only 150 bars (2,200 psi) in Europe until about 1950. From about 1975 until now, the standard pressure is 200 bars (2,900 psi). Firemen need slim, lightweight cylinders to move in confined spaces; since about 1995 cylinders for 300 bars (4,400 psi) WP were used (first in pure steel).

A demand for reduced weight led to different generations of composite (fiber and matrix, over a liner) cylinders that are more easily damageable by a hit from outside. Therefore, composite cylinders are usually built for 300 bars (4,400 psi).

Hydraulic (filled with water) testing pressure is usually 50% higher than the working pressure.

Equipment

Pressure Vessel 1

Pressure Vessel 1

Pressure Vessel Tripatra

Pressure Vessel Tripatra

Pressure Vessel 2

Pressure Vessel 2

Pressure Vessel 3

Pressure Vessel 3

Project Gallery